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Abstract— Antiplane deformation of a laminated medium with a semi-infinite crack parallel to the
interfaces between the layers is considered. The homogeneous, elastic and isotropic layers of two
different types are arranged periodically. This allows the reduction of the initial boundary value
problem to the Wiener-Hopf equation by combined application of the Laplace and the discrete
Fourier transforms. For the specific case of an exponentially decaying load the solution is obtained
in closed form by means of rapidly convergent triple integrals. The simple expressions for the stress
intensity factor and the energy release rate are derived. For some limiting cases the solution is found
to be consistent with previous results. A parametric study gave an opportunity to examine the
accuracy of the known approximate sandwich model of multilayered composites. Copyright © 1996
Elsevier Science Ltd.

1. INTRODUCTION

Multilayered laminates with a large number of layers represent an important type of
composites employed recently in engineering practice. Analysis of the overall mechanical
properties of these composites has been developed to an advanced level. Deriving the
laminate stiffnesses can be easily carried out for any number of layers. But when fracture
of a laminate 1s investigated and exact strongly non-uniform stress distribution is required,
increasing the number of plies essentially complicates the analysis. An approximate discrete
model of the layered media was employed by Slepyan (1974) who considered the steady-
state crack propagation. Another way to avoid difficulties arising in the study of fracture
of the multilayered laminates is to use models with a reduced number of layers. Different
models of this type are employed in fracture mechanics of composites. A finite mode 3
interface crack between inner layers of a four-layered composite was investigated by Chen
and Sih (1971). A large number of layers in the actual laminate was averaged by the two
outer layers of infinite height. Ashbaugh (1973) considered a mode 1 tunneling crack in a
bimaterial laminated composite. In that work the multilayered composite is replaced by a
three-layered system where the cracked layer of one material is sandwiched between two
half-spaces of the second material. Thus it is supposed that all the perturbation generated
by the crack is localized in the cracked layer and the two neighboring ones. The same three
layered model was employed by Hilton and Sih (1971) who considered different crack
locations in the middle layer under the assumption that the outer layers possess some
effective elastic properties. Numerous results for cracks in different sandwich systems may
be found in Hutchinson and Suo (1991) and Sih and Chen (1981).

An investigation of the stress field near the crack tip in a multilayered composite
consisting of thin plies leads to the necessity of introducing models with a large number of
layers. The term *‘thin’” means here that the ratio of the crack length to the characteristic
ply thickness is not too small. Employing for such laminates the models with a reduced
number of layers is possible only in the special case of “‘short” loadings when the charac-
teristic ply thickness sufficiently exceeds the length parameter associated with the load
distribution. This statement will be illustrated by some results in the present paper.

A bimaterial medium consisting of an infinite number of layers with a semi-infinite
mode III crack in one of them, to be considered below, is an example of the mentioned
multilayered model. The materials of the layers are taken as homogeneous elastic and
isotropic. In Section 2 a boundary problem for unbounded medium is formulated. Then by
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Fig. 1. Antiplane deformation of a periodically laminated medium with a semi-infinite crack at the
plane of symmetry.
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using the regular arrangement of the layers the initial problem is reduced to a problem for
a representative cell with an additional mixed boundary condition. This is accomplished
with the help of the discrete Fourier transform. The closed form solution of the problem is
constructed in Section 3. Application of the Laplace transform leads to a Wiener-Hopf
equation which is solved exactly by means of Cauchy type integrals. In the case of an
exponentially decaying load the final expressions for the components of the stress-strain
field in any point of multilayered composite are obtained in the form of rapidly convergent
triple integrals. In Section 4 formulae for the stress intensity factor and the energy release
rate are derived and a parametric study with graphical illustration is carried out. The
obtained exact results are compared with those given by “sandwich’ approximation. Some
limiting cases of interest are considered.

2. FORMULATION OF THE PROBLEM FOR A REPRESENTATIVE CELL

Consider a bimaterial composite consisting of an infinite number of isotropic elastic
layers. Layers of two different types characterized by thicknesses /1, and elastic shear moduli
u, (r=1,2) are arranged symmetrically with respect to the plane 1" = 0 of the global
coordinate system x’, 3, =". Hence one layer of double thickness —4, < )" < A, is produced
(Fig. 1). The material of this layer having shear modulus g, will be regarded as the inner
material and the second material with modulus u, as the outer one. A semi-infinite crack is
located in the plane of symmetry of the body 1" = 0. Shear loading ¢(x’). x" < 0 applied to
its faces produces the antiplane stress state.

Since the problem is skew-symmetric it is sufficient to consider a boundary value
problem for the half-space 3" > 0 (Fig. 2). Note that such a problem may also be employed
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Fig. 2. Equivalent problem for a layered half-space debonding from a rigid substrate.
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in the study of the debonding of a multilayered laminate from a rigid substrate. The half-
space will be viewed as an assemblage of an infinite number of identical cells
(h+h)k <y <(h+h)k+1),k=0,1,2,... Each cell having thickness 4, + 4, includes
two layers of both types. In the local coordinate system x, y, z

x=x, y=y—kthy+h)—h, z== H

these layers occupy the regions —#4, < y < 0 (type one) and 0 < y < ki, (type two). Since
the deformation is antiplane only displacements in the z-direction take place

W = R (xy) r=1,27 k=01,2,... Q)

and the boundary value problem for the layered elastic half-space can be formulated as
follows. The only non-zero stresses are given by the relations

(k) Ak
=y ont Loy ol 3
r‘: r (":x Ve r 6‘)}

For the sake of brevity the subscripts yz hereafter will be omitted : t*’ = ¥’ To fulfill the
equations of equilibrium it is sufficient to satisfy the harmonic equation

(t\,,fw(kl
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The continuity conditions at the interfaces are expressed as the conditions between the
layers of each cell

¥ (x.0) =1 (x,0) =0 (5)
Wi (x,0) —uwi(x,0) =0 (6)

and the conditions at the boundaries between the cells

T‘]“ ”(-‘C‘ —hy)— T(:k’(-\’s hy) =0 (7)
witt (=) =i (x hy) = 0, (8)
where —oc < x < w0,and k =0, 1, 2,.... The mixed condition at the lower boundary of

the cell with & = 0 1s defined by the shear loading applied to the crack face
t(x, ~hy) =gqx). —x <x<0, 9
and by the absence of displacements in front of the crack
w(x,—h)=0, 0<x< x. (10)

The structure of the formulated boundary value problem (2)—(10) calls rather naturally for
the use of the discrete Fourier transform. But its direct application is impossible since the
distribution of the elastic properties in the domain does not possess the translational
symmetry in the y’-direction.

A means to overcome this obstacle was indicated by Nuller (1981). Assume that the
stresses t\”’( —#,, x) existing in front of the crack in the domain ' = 0, x > 0 are defined
by some function Q(x). Let us now replace the rigid substrate in the domain 3 < 0 by a
layered elastic half space assuming that the relations (1)—(8) are valid also for k = —1,
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—2..... The mating conditions in the plane 3 = 0 will be generated so that the stress and
strain states of the upper half space )* > 0 remain the same as before replacement. Note
that in contrast to the initial problem, the plane )” = 0 becomes an interface between
material 1 (lower layer of the cell number 0) and material 2 (upper layer of the cell number
—1).

Further, consider an auxiliary problem for the lower half space subjected. at the
boundary 1 =0, to the loading Q(x) for x > 0 and ¢(x) for x < 0. Consequently the
displacements of the deformed boundary will be ws "(x, h,) = W(x). Here W(x) is some
unknown function.

One now observes that the mentioned mating conditions at the interface between upper
and lower half spaces are given by the continuity condition for the stresses

Mx, =h) =15 (. h) =0, —xw<x<x (11)
and a condition of the displacement jump
wi(x, —h)) —wS (k) = W(Y), —c < x < w. (12)

Note that the conditions (9), (10) also remain valid. In view of the last relation the boundary
conditions for the displacements at the interfaces between all the cells may be rewritten as

whx, =) —wP(x ) =6 | Wx), k=0,+1,+2,..., (13)

where ¢, 1s the Kronecker delta. Hence the relations (3)-(8) for k =0, +1. +2,... and
condition (13) determine the boundary value problem for the layered space possessing the
desired symmetry properties. The stress strain state of the upper half space of this problem
is then equivalent to the former one defined by (2)-(10) with k =0, 1, 2,.... Application
of the discrete Fourier transform

o= Y ek (14)
k= -z

converts the problem for the whole space to the problem for a representative cell
(—h <y h):

SO w
oot

#x.0.¢) —1Hx.0.¢) =0 )

WX 0.¢) —nf(x.0.¢) = 0 (18)

¥, —h . @) — TR X ha ) = 0 (19

wi(x, —h. @) —w(x. hy @) = WIX), (20)

where » = e”.

The formal solution of this problem to be constructed in the following section will give
all the components of the stress strain state in terms of function W{(x). Afterwards the
additional mixed boundary condition (9)—(10) will be employed to eliminate this function
and to obtain the final solution.
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3. METHOD OF SOLUTION

The method for deriving the closed form solution employed here was suggested in the
mentioned work by Nuller (1981). Expressions for the functions w¥ satisfying the equi-
librium eqns (16) identically are taken as inverse double-sided Laplace transforms

1
wrx, v, ¢) = fnJ [4,(p,®)sinpy+ B.(p, p)cospyle’ dp, r=1,2 2n
L

where L is a contour in the plane of complex variable p located in the left hand vicinity of
the imaginary axis {L: Re (p) = —¢, ¢ > 0} and 4,, B, are some functions of the Laplace
and Fourier transforms parameters. Substitution of (21) in (15), (17)—(20) yields the
expressions for these functions through the Laplace transform of the displacement jump W

A (p.¢) = —u(sinph, +py sinph,)D ' (p, $)W(p).
B (p. ) = p(cos phy —ycosph)D ' (p. o) W(p).

By(p.§) = Bi(p.p). A:x(p.d)=p 'A,(p, ) (22)
where
=& (23)
I

is the elastic moduli ratio, and

D(p, ¢) = u(y” + 1)+ (1 +p*)ysin ph, sin ph, —2uy cos ph, cos phs. (24)

Consequently the inverse discrete Fourier transform

L[ ,
"= f FH(@)e " dg 25)

T

will give the expressions for all components of the stress-strain field in every cell of the
space in terms of W.

To eliminate function W the mixed boundary condition (9)—(10) is employed. Cal-
culation of the displacements and stresses in the crack plane (k = 0,y = —h,) in accordance
with (15), (21), (22), (25). substitution into (9)—(10) and exchanging the order of the
Laplace and the Fourier transforms leads to the following relations

wi (p) = Fi(p)W(p) (26)
T(p)+T () = FA(p)W(p) 27)

Here symbols w™(p), 1" (p) and t7(p) denote the corresponding half Laplace transforms
of the displacements at the crack face

0
w(p) = J wi (x. —h,)e P dx, (28)

—

of the stresses in front of the crack
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T(p) = J (x, —h,)e " dx (29)
0
and of the applied loading
]
T(p) = f g(x)e 7 dx. (30)
Superscripts *“+ " and **—"" as usual indicate functions analytic in the left, Re (p) < —e¢,

and right, Re (p) > —e, half-planes respectively. The expressions for the functions F,(p)
and F,(p) are found to be

e

Fi(p) = ,H—?J (14 y(usin ph, sin ph, —cos ph, cos ph,)|D ' (p, ¢) dé.

Fy(p)y = — %J pylucos ph, sinph, +sin ph, cos ph,] D~ (p, ¢) dop. €2y

Relations (26) and (27) are equivalent to the Wiener-Hopf equation

T(p) = NpYW (p)—1 (p), pelL (32)
where
F>(p)
(p) F.(p) (33)

The technique employed for its solution is similar to that used by Ryvkin and Sills (1993)
and will be just summarized here. The applied traction g(x) is taken in the form

q(x) = —qoexp (x/]) (34)

where ¢, is a constant with dimensions of stress and / is a length parameter describing the
loading decay rate. Then the half-transform (30) is given by

40
p—>b

T (p)= (35

where b = 1/1.

Since both functions N(p) and 77 (p) have no singularities in the strip —e < Re (p) < 0
it is possible to move contour L to the imaginary axis Re(p) = 0. Owing to this, the
integrals in (31) are evaluated analytically and consequently the problem coefficient N for
p =i, —oc <t < o0, is expressed as

N(it) = —u, tB(1), (36)
B = Ru+(1+ ) 1,)* —4p? cosh ™ hyrcosh = Ayt 2+ (1 —p?)i 1,
B 2(ut; +12) |

1, = tanhh,r, ¢, = tanhh,r. (37

So function N(p) on the imaginary axis is real valued and may be easily factorized in terms
of Cauchy-type integrals (see Gakhov, 1966)
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N~ (p)
N(p) = , 38
N*(p) %)
N*(p) = N (p)NE(p), (39)
Ni@) =p ' /p+0, Ni(p)=in/p—0. (40)
N3 (p) =exp [Zimfm mT]\iz—](]i)du} N, (it) = sgn (1) B(¢). 41)

where the expressions p+0 and p—0 in (40) are to be interpreted as that branch cut for the
function \/ﬁ taken along the negative and positive real axes, respectively. Note that function
N,(it) is continuous at point ¢ = 0 since

' ulh, + phs)
Jirn, B(1) = i\/w

Using the factorization to rearrange (32), applying the generalized Liouville theorem and
making the usual physical assumption that the local strain energy in the neighborhood of
the crack tip is bounded one obtains the solution of the Wiener—Hopf equation in the
following form

g0 | N7 (b)
(p) = —— —11 42
T p—b[NWp) } @
_ GoN* ()
W (p) = ——— . (43)
@ (p—HN " (p)

It is now possible to determine the unknown transform W(p) from (26) or (27). Its
substitution into (22) and carrying out the inverse transformations (21), (25) gives the
desired closed form solution of the initial problem (2)-(10) as triple integrals. Two of the
integrals have infinite limits but their numerical evaluation is easy since, as it is possible to
show, the integrands decay exponentially for large values of their respective arguments

In N,
lim 2 (u) = O[max (6_/"‘"‘,6"'2‘“')]’
u— i p__u
lim wXp,y,¢) = Ofe!'~ """ lr],
p—=ix

where function w*(p, y, ¢) denotes the Laplace transform of function w}(x, y, ¢).

4. RESULTS

4.1. Stress intensity factor

To carry out fracture analysis the behavior of the obtained solution in cell number 0
near the point x = 0, y = 0 must be examined. Asymptotes of the singular stresses and the
crack face displacements in the crack tip vicinity may be found from the asymptotic
behavior of the corresponding Laplace transforms for large values of |p|. From (42), (43)
it follows that for |p| — oc in the respective half-planes
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TP) ~ quNT (h)p ', (44)
_ qo 4 ~32
wo(p) ~ ;N by (—p) . (45)
1
Consequently (Noble, 1958),
N7 (b
e =)y = 2N (46)
\/’ [IAY

and

2q,N () [—x
wi(x. =hy) o0 = = I o 77?[1 (47)
1

Deriving the value of N*(b) in accordance with (39)—(41) and using even properties of the
function N, one obtains the expression for the stress intensity factor

{

SHIe

K= (Io\/ N1 (bh) (48)
1 [* In B(bS

N1 (b) = exp { f n 5 ‘v)dcj}. (49)
Tty E+1

Consider now a simple reference problem of a semi-infinite crack in a homogeneous space
possessing the elastic properties associated with the first (inner) material. The loading is
the same as (34). To calculate the stress intensity factor for this problem from the obtained
solution for a layered media it is sufficient to consider the case of identical materials y = 1
or, alternatively, to eliminate the volume occupied by the second (outer) material, i.e., to
assume that 4, — 0. In both cases, from (37) follows that B(f) = 1. Hence in accordance
with (48), (49) the stress intensity factor K, in this problem is. not surprisingly, found to
be (see Atkinson, 1977)

Sy

K, = qy /) (50)

N

Recall that b = 1//. The value of K, is suitable for normalization of the general result. Then
the expression of the non-dimensional stress intensity factor K is given by a simple formula
K=

K~ N3 (b) (51

where N (b) must be calculated from (49). (37).

From the dimensional considerations it follows that the obtained non-dimensional
stress intensity factor may be viewed as a function of the three non-dimensional parameters
of the problem

o h
R= K<; , “.ﬂ). (52)

This fact may be also observed explicitly from (37), (49) and (51). It should be noted here
that as was emphasized by Ryvkin er al. (1994) the actual size of the K-controlled zone in
the crack tip vicinity strongly depends upon the properties of the inner layer and degenerates
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Fig. 3. Graph of the normalized stress intensity factor K = (q[,\f'?[)"K vs the ratio of the layers
shear moduli 4 = p,/u, for the crack in the laminated medium. Logarithmic scale is used ; 4,/ = 0.5.
Horizontal line corresponds to the case of the homogeneous medium (4. = 0).

to zero when 4, — 0 or u, — 0. Therefore in further analysis it is reasonable to interpret the
variation of non-dimensional parameters as changing in u,, 4, or / when s, and y, remain
fixed (recall that u = p,/u)).

In Fig. 3 the dependence of the non-dimensional stress intensity factor from shear
moduli ratio y is illustrated. A family of curves for A,/h, = 0, 0.01,0.1, |, oo with #,// = 0.5
is presented in a logarithmic scale. The degenerate case 4. = 0 corresponds to the reference
problem for the homogeneous space. So in accordance with (51) K = 1 and the respecting
graph is a horizontal straight line. Decreasing of the stress intensity factor with increasing
of u as observed in the rest of the cases is rather plausible. In fact, when u (i.e. ) increases
then the outer layers become stiffer and reinforce the body. Hence the displacements on the
outer boundaries of the middie layer containing the crack will be more restricted and
consequently the stress intensity factor diminishes. The influence of the thicknesses ratio
hy/h, on the behavior of K which is observed in the figure may be explained by similar
considerations. With respect to the reference problem the effect of reinforcing (weakening)
for the fixed u > 1(u < 1) amplifies with the growth of /.. therefore K decreases (increases).
The extreme curve for h,/h, = oo presents the important case of the cracked layer sand-
wiched between two identical half-spaces. For g = 1 the laminated medium becomes homo-
geneous irrespective of /1,, consequently K = 1 for all the curves.

The curves have also the same asymptotes for u — 0 (Inyg —» —oc) as well as for y —
oc (In u — o0). The asymptotic values correspond to the problems for a single layer of the
thickness 24, having a crack at its midplane with a free or clamped outer boundaries
respectively. For the case of clamped boundaries when y — o« from (37), (49) and (51)
follows that

H—r X

. . hy
K, = lim K{ u, »’-'A.* =exp(4) (53)
h, h
where
Iy

A= ) (54)

Pt

1 f In [tanh (h, )
(

n “+1

) <
Formulas (53), (54) are in agreement with the results obtained by Ryvkin and Banks-Sills

(1994) for a crack at the interface between an elastic strip and a dissimilar elastic half-
plane. The second boundary of the strip is clamped and the loading is the same as (34).



3620 M. Ryvkin

When the half-plane becomes absolutely rigid then from the symmetry one gets the con-
sidered limiting case of the layer with clamped boundaries. Correspondingly, setting y, = oo
in eqns (58). (60) of the above reference gives the same expression for the normalized stress
intensity factor K, as (53), (54). Note that a factor 1/z is missing in their eqn (58) before
the integral. The value of 4 may be expressed through I'-functions. Employing the identity

I'(l+p)I'(1—p)
r(124+p)I'(1/2—p)

pceot(np) =

after some manipulations one obtains

A= e
b (55)
i1+ -
T
For the second limiting case with free boundaries, setting ¢ — 0 gives
Ko = lim K[ w210} = A 56
0 = lim #'E’T =exp(—A). (56)

So, the normalized stress intensity factors for a cracked layer in the cases of the clamped
and free boundaries are reciprocals

Central symmetry of the curves which is observed in Fig. 3 means that such a relation is
general and true not only for the limiting cases

o hy b s (1 hy by ,
= ==K, , 00). 57
K(“’h.’ 1) (u’h]' /)v 1€ (0, 00) (57)

Thus, exchanging the inner and outer materials, which inverts the shear moduli ratio
U = o/, Inverts also the normalized stress intensity factor. Analytically this follows from
the identity B(z, u)B(z, 1/u) = 1 which can be proven from (37). Formula (57) meets the
result obtained by Sih and Chen (1981). They considered a finite length crack under
constant shear loading in a layer sandwiched between two half-spaces and derived an
analytical expression for the stress intensity factor in the limiting case when the ratio of
layer thickness to crack length tends to 0.

4.2. Energy release rate

Investigation of the influence of loading length on the fracture characteristics of the
problem will be performed in terms of energy release rate G. Applying the formula for the
local work at the crack tip

1 a“
G =—lim j (a, —h,;)Aw(a) dx, (58)

a—Q
a ]

where Aw(a) = 2w{"'(a, — h,) is the crack opening displacement, and employing the asymp-
totes (46), (47) one obtains
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Fig. 4. Graph of the normalized energy release rate G vs non-dimensional load distribution parameter
h, /1 for the different shear moduli ratio with A,/h, = 5.
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as it should be. Using the value of energy release rate in the reference problem for the crack
in the homogeneous body, with the properties of the inner material

K: g3l
A [ (60)

! 2w o

to normalize the result, gives the expression for the non-dimensional energy release rate for
the crack in the layered medium

. G o |
G=G_h=[N: ) (61)

Graphs of function G(h,/l) for different shear moduli ratio x4 = 0.1, 0.2, 0.5, 0.8 with
hy/h, = 5 are presented in Fig. 4. From eqns (51), (61) it follows that

Q)

K=./G. (62)

Consequently the reciprocal property is also valid for the normalized energy release rate

Gy =G~ '(1/p), pe(0, ). (63)

For this reason only the curves for the values of pe (0, 1) are presented. Since, as it is seen
from (37) and (49), N3 (b) — 1 for h,/l — oo, irrespective of u, all the curves have the same
asymptote. This is intuitively clear since with decreasing loading decay length / the stress
field perturbation produced by the applied loading tends to be localized inside the inner
layer which becomes infinitely thick in the /-scale. Consequently, G — G, for all p and in
accordance with (61) G — 1. The limiting value of the energy release rate for the opposite
case of the infinite long loading when /,// — 0 is expressed through the magnitude N7 (0).
Deriving it from (41) by the use of the Sokhotski-Plemelj formula one obtains
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o hs
1 = - . 64
/"I/IEOG phy + phsy) (&)

It is worthwhile to present also the limiting value of the stress intensity factor for the infinite
long loading. From (62) immediately follows that

. > phy+hy, 1
1 =|— .
"'IIIEOK [#(hl +#h:)j| (62)

The asymptotic results (64), (65) may be confirmed in the following manner. When the
loading decay length tends to infinity, significantly exceeding the layers thicknesses, the far
field displacements of the crack faces tend to those of a crack in an anisotropic homogeneous
body possessing the effective elastic properties and subjected to the same loading. Then,
viewing the energy release rate as calculated through the work of the external forces, one
concludes

m G =G,. (66)

li
fy 10

where G, is the value of energy release rate for the crack in the anisotropic homogeneous
body, normalized in accordance with (60), (61). Values of the effective axial and tangential
elastic shear moduli of the periodically laminated transversely isotropic medium were
determined by Postma (1953)

ulhy +hy) _ﬂ‘*’#%
Wy + s i M7= h, +h, Hy-

i = (67)

A fundamental study of cracks in anisotropic elastic bodies was accomplished by Sih et al.
(1955). Using their results it is possible to show that the stress intensity factor for the crack
in the considered anisotropic homogeneous body will be the same as in the reference
problem for the isotropic one. Employing next the formula relating stress intensity factor
and energy release rate in the transversely anisotropic body for calculating G, leads to the
expression coinciding with the right hand side of (64).

Hence the averaging anisotropic model gives a true asymptotic result for the energy
release rate but is unfit for calculating the stress intensity factor defined by the local stress
field. Formula (65) for the stress intensity factor may be confirmed by the help of the eigen-
solution for the considered laminated medium with the semi-infinite crack. Following
Ryvkin et al. it is possible to derive this solution from the results for the specific loading
obtained in Section 3. Assuming that

C
do = (68)

NG

and taking a limit for /> oc one gets the solution for an infinite long loading with an
infinite small amplitude, i.e.. the eigen-solution. In front of the crack the near and the
remote stress distributions in this solution have near and far asymptotes respectively. These
asymptotes are characterized by the near K, and the far K, stress intensity factors, connected
by the relation

Kn .uhl +h” h
D - 69
K, |:ﬂ(h1 +ﬂhz)i| , (69)

which agrees with (63).
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4.3. Comparison with the sandwich model

The obtained exact solution of the initial problem of a crack in a layered medium gives
an opportunity to examine the accuracy of some approximate models widely used in fracture
analysis of laminates. Of course, this comparison may be carried out only for periodically
laminated bimaterial systems but the obtained results will supply valuable information also
for the modeling of more complicated multilayered composites. Some estimations for the
simplest model, when elastic properties of the half-spaces sandwiching the cracked layer of
one material are associated with the properties of the second material of the bimaterial
laminate, may be obtained directly from Fig. 3. The curve for h,/h, = oo there may be
viewed as representing the solution for the approximate model. Comparing it, for example,
with the curve for A,/h, = 1 one can conclude that for the considered loading decay length
h,/l = 0.5 a relative error in calculation of the stress intensity factor will not exceed 10%
over a whole range of the shear moduli ratio for the cases when A, > 4,.

In a more precise sandwich model it is supposed that properties of the isotropic half-
spaces are the averages over a large number of layers of the actual laminate. The limitations
of this model may also be studied by means of the obtained solution. Suppose that for a
specific combination of problem parameters h,/h,, u,/u;, h,// an average shear modulus
ug of the half-spaces has been chosen in such a way that the stress intensity factor derived
from the approximate model is the same as in the exact multilayered one. The natural
requirement for the approximate model is that it is must be valid for different loading
characteristics. To investigate this issue a numerical procedure was developed based on the
comparison between the solution for the exact model with the actual value of 4, and the
solution for A, = . The non-dimensional value ™ = ug’/p, was determined from the
condition of equality of the stress intensity factors. Repeating this procedure for different
values of the loading parameter 4,// allowed to examine the dependence of u* on A/l
Graphical results for three different values of shear moduli ratio in an actual laminate
u=0.1,0.3 and 0.5 with A,/h, = 1 are depicted in Fig. 5. The limiting values of u® for the
case of infinite long loading #,/! — 0 may be found analytically. Setting 4, — oo in (65) and
equating the obtained result to the exact value of the stress intensity factor with the finite
h, one obtains

. a uih, +uhy) 2
h],!{r—r-lou =|: 1h, +h, ’ (70)

Note that this last formula is of particular interest. It represents the expression for the
average shear modulus in the sandwich approximation of the periodically layered
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Fig. 5. Dependence of the non-dimensional averaging shear modulus ¢ of the half-spaces in the
sandwich model upon the load distribution parameter 4,// for different shear moduli ratio in the
actual laminate ; #1./h, = 1.
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composite, giving the exact value of stress intensity factor in the case of a sufficiently long
loading. For the considered example with equal thicknesses

lim p* = V/ﬁ» (71)

hyjl—0

or, in the dimensional form, u3" — \/uluz. For all the curves a significant variation of
averaging shear modulus in the region 0 < 4,// < 0.5 is observed. Therefore, employing the
sandwich model will be of limited application for the mentioned values of the parameter
associated with the loading decay length. Finally, it may be noted that studying the
dependence p*(4,/!) for the case of short loadings, when 2 < £,//, is of little interest. In this
case, as it follows from Fig. 4 and (62), the value of stress intensity factor does not essentially
differ from that for the crack in a homogeneous space.

5. CONCLUDING REMARKS

The presented closed form solution for the problem of a Mode HI crack in a periodically
layered bimaterial media allowed to investigate the influence of the problem parameters on
the fracture characteristics.

[t was found, as expected, that the stress intensity factor decreases (increases) mon-
otonically with respect to its value for a homogeneous space with reinforcing (weakening)
of the media, caused either by increasing (decreasing) the outer layers shear modulus or by
increasing their thicknesses. For the considered exponentially decaying load it was shown
that exchanging the materials of the layers leads to the inversion of the values of normalized
stress intensity factor and energy release rate. Consequently, normalized stress intensity
factors for the limiting cases of bilayered media when outer layers have disappeared or
have become absolutely rigid, are found to be reciprocals.

The validity of the approximate models with reduced number of layers was examined.
For this goal we have compared the obtained solution for the composite with an infinite
number of layers with the solution for a crack in a layer sandwiched between two half-
spaces. For the case when the characteristic loading decay length is of the order of cracked
layer thickness or less, the following result is recovered. If the outer layers are thicker then
the inner ones, then the calculation of the stress intensity factor by use of the sandwich
approximation with the material of the half-spaces associated with the material of the outer
layers leads to a less than about 10% error. Employing the model with the effective
shear modulus of the half-spaces improves the accuracy of the sandwich model, but for a
sufficiently long loading its application becomes questionable. On the other hand, in the
limiting case of an infinitely long loading simple formula for the effective shear modulus
may be employed.

From symmetry considerations all the obtained results may be used in the study of
antiplane debonding of multilayered laminates from a rigid substrate.

It may be noted that the based on the discrete Fourier transform mathematical tech-
nique, developed by Nuller (1981) and implemented in the present paper, is found to be a
convenient tool for the study of fracture of periodically layered laminates. It is also appli-
cable in more complicated cases such as Mode I and Mode II cracks, steady state crack
propagation and cracks in laminates of finite thickness.
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